Headline

Diskon transportasi hingga 30%, bantuan pangan, dan sistem kerja fleksibel bergulir.

Cara Mencari Median dengan Mudah dan Cepat: Rumus Lengkap, 7 Contoh Soal & Langkah Menghitung

Reynaldi Andrian Pamungkas
23/11/2025 23:45
Cara Mencari Median dengan Mudah dan Cepat: Rumus Lengkap, 7 Contoh Soal & Langkah Menghitung
Berikut cara mencari median(Freepik)

PERNAH bingung saat diminta mencari nilai tengah dari data? Tenang! Cara mencari median sebenarnya sangat sederhana asal tahu langkahnya. Artikel ini akan membahas dari nol sampai kamu bisa menguasai median dalam hitungan menit. Cocok banget buat kamu siswa kelas 7 atau 8 SMP yang sedang belajar statistik!

Median adalah salah satu ukuran pemusatan data yang paling sering dipakai di matematika. Tidak seperti rata-rata yang bisa "tertipu" oleh angka ekstrem, median selalu menunjukkan nilai paling tengah setelah data diurutkan. Yuk, kita pelajari bareng-bareng!

Apa Itu Median dan Kenapa Penting?

Median adalah nilai tengah dari suatu kumpulan data yang telah diurutkan dari yang terkecil hingga terbesar (atau sebaliknya). Median sering disebut juga sebagai "nilai tengah" karena posisinya benar-benar berada di tengah-tengah data.

Contoh Sederhana dalam Kehidupan

Bayangkan kamu punya data gaji 5 karyawan: Rp2 juta, Rp3 juta, Rp3,5 juta, Rp4 juta, dan Rp50 juta (bos). Jika pakai rata-rata, hasilnya jadi Rp12,5 juta — padahal 4 orang gajinya di bawah Rp4 juta! Tapi kalau pakai cara mencari median:

  • Urutkan: 2 → 3 → 3,5 → 4 → 50
  • Median = Rp3,5 juta (nilai tengah)

Ini lebih mewakili gaji umum karyawan, kan?

Kapan Harus Pakai Median?

Kondisi Gunakan Median?
Ada nilai ekstrem (outlier) Ya
Data berbentuk ordinal (peringkat) Ya
Data simetris & tanpa outlier Bisa rata-rata

Rumus Median: Ganjil vs Genap

Rumus cara mencari median berbeda tergantung jumlah data (n) ganjil atau genap. Berikut penjelasannya:

1. Median untuk Data Ganjil (n ganjil)

Rumus:

Median = data ke- \frac{n+1}{2}

Artinya: ambil data pada posisi tengah setelah diurutkan.

2. Median untuk Data Genap (n genap)

Rumus:

Median = \frac{\text{data ke-}\frac{n}{2} + \text{data ke-}(\frac{n}{2} + 1)}{2}

Artinya: rata-rata dua nilai tengah.

Tabel Ringkasan Rumus

Jumlah Data Posisi Median Contoh (n=7)
Ganjil ke- \frac{n+1}{2} ke-4
Genap ke- \frac{n}{2} dan ke- \frac{n}{2}+1 ke-3,5 → ke-3 dan ke-4

Langkah-Langkah Cara Mencari Median (Panduan Praktis)

Ikuti 4 langkah mudah ini setiap kali kamu diminta mencari median:

  1. Urutkan data dari kecil ke besar
  2. Hitung jumlah data (n)
  3. Cek ganjil atau genap
  4. Terapkan rumus sesuai jenis data

Tips: Selalu tulis data yang sudah diurutkan di kertas. Ini membantu menghindari salah hitung posisi!

7 Contoh Soal Cara Mencari Median + Penyelesaian

Contoh 1: Data Ganjil Sederhana

Soal: Tentukan median dari: 23, 19, 27, 21, 25

Jawab:

  1. Urutkan: 19, 21, 23, 25, 27
  2. n = 5 → posisi (5+1)/2 = 3
  3. Median = 23

Contoh 2: Data Genap Dasar

Soal: Cari median: 45, 42, 48, 41, 47, 44

Jawab:

  1. Urutkan: 41, 42, 44, 45, 47, 48
  2. n = 6 → ambil data ke-3 dan ke-4
  3. Median = (44 + 45) ÷ 2 = 44,5

Contoh 3: Data dengan Pengulangan

Soal: Median dari: 5, 7, 5, 8, 7, 9, 6

Jawab:

  1. Urutkan: 5, 5, 6, 7, 7, 8, 9
  2. n = 7 → posisi ke-4
  3. Median = 7

Contoh 4: Data Negatif

Soal: Median: -3, 5, -1, 7, -5, 2

Jawab:

  1. Urutkan: -5, -3, -1, 2, 5, 7
  2. n = 6 → rata-rata data ke-3 dan ke-4
  3. Median = (-1 + 2) ÷ 2 = 0,5

Contoh 5: Data Desimal

Soal: 3,2 ; 4,5 ; 2,8 ; 5,1 ; 3,9

Jawab:

  1. Urutkan: 2,8 ; 3,2 ; 3,9 ; 4,5 ; 5,1
  2. n = 5 → median = data ke-3 = 3,9

Contoh 6: Data Genap Besar

Soal: 12, 15, 18, 11, 20, 14, 16, 13

Jawab:

  1. Urutkan: 11, 12, 13, 14, 15, 16, 18, 20
  2. n = 8 → ambil ke-4 dan ke-5
  3. Median = (14 + 15) ÷ 2 = 14,5

Contoh 7: Data dengan Outlier

Soal: Nilai ujian: 60, 70, 75, 80, 85, 90, 100, 45

Jawab:

  1. Urutkan: 45, 60, 70, 75, 80, 85, 90, 100
  2. n = 8 → median = (75 + 80) ÷ 2 = 77,5

Meski ada nilai 45 (rendah), median tetap mewakili nilai tengah kelas!

Cara Mencari Median Data Berkelompok (Bonus Tingkat Lanjutan)

Untuk data dalam tabel distribusi frekuensi, gunakan rumus:

Median = L + \frac{\frac{n}{2} - F}{f} \times c

  • L = batas bawah kelas median
  • n = total data
  • F = frekuensi kumulatif sebelum kelas median
  • f = frekuensi kelas median
  • c = panjang kelas

Contoh Data Berkelompok

Nilai Frekuensi Kumulatif
1-3 2 2
4-6 5 7
7-9 8 15
10-12 3 18

n = 18 → n/2 = 9 → kelas median = 7-9 (karena kumulatif 7 < 9 ≤ 15)

Median = 6,5 + \frac{9 - 7}{8} \times 3 = 6,5 + 0,75 = 7,25

Tips & Trik Cepat Menghitung Median

  • Garis bawahi data tengah saat mengurutkan
  • Coret data dari pinggir sampai ketemu tengah (untuk data kecil)
  • Gunakan jari untuk menghitung posisi
  • Selalu cek ulang apakah data sudah terurut benar
  • Latihan soal harian 3-5 menit setiap hari

Kesalahan Umum & Cara Menghindarinya

Kesalahan Cara Benar
Lupa mengurutkan data Selalu urutkan dulu!
Salah hitung posisi tengah Tulis n dan rumus di kertas
Mengabaikan data berulang Urutkan termasuk pengulangan

Kesimpulan: Kuasai Cara Mencari Median dalam 5 Menit!

Setelah membaca panduan ini, kamu sekarang sudah tahu:

  • Apa itu median dan kapan dipakai
  • Rumus untuk data ganjil dan genap
  • Langkah praktis menghitung
  • 7 contoh soal lengkap
  • Bahkan bonus data berkelompok!

Cara mencari median itu mudah asal kamu selalu mengurutkan data dulu. Latihan soal di atas, kerjakan ulang tanpa melihat jawaban. Dijamin dalam seminggu kamu sudah jago!

Selamat belajar matematika! Semoga nilai statistik kamu semakin oke. (Z-4)



Cek berita dan artikel yg lain di Google News dan dan ikuti WhatsApp channel mediaindonesia.com
Editor : Reynaldi
Berita Lainnya